Answer:
[tex]20\ ft[/tex] by [tex]30\ ft[/tex]
[tex]15\ ft[/tex] by [tex]40\ ft[/tex]
Step-by-step explanation:
In this problem I'm assuming the office is rectangular.
so
The area of rectangle is equal to
[tex]A=LW[/tex]
where
L is the length of the rectangle
W is the width of the rectangle
In this problem we have
[tex]A=600\ ft^{2}[/tex]
so
[tex]600=LW[/tex] ------> equation A
Find two possible dimensions of the office
case A) Assume a length side L and find the value of W in the equation A
so
For [tex]L=30\ ft[/tex]
substitute in the equation and solve for W
[tex]600=(30)W[/tex]
[tex]W=600/30=20\ ft[/tex]
The dimensions are [tex]20\ ft[/tex] by [tex]30\ ft[/tex]
case B) Assume a length side L and find the value of W in the equation A
so
For [tex]L=40\ ft[/tex]
substitute in the equation and solve for W
[tex]600=(40)W[/tex]
[tex]W=600/40=15\ ft[/tex]
The dimensions are [tex]15\ ft[/tex] by [tex]40\ ft[/tex]