A may 2000 Gallup poll found that 38% of a random sample of 1023 adults said that they believe in ghosts. The standard deviation is 1.5%. What is the margin of error for this survey? Determine an interval that is likely to contain the percent of all adults who believe in ghosts.

Respuesta :

Answer:

Margin of error = 0.09

Confidence interval = (0.29, 0.41)

Step-by-step explanation:

Sample size, n = 1023

p = 38%

   = 0.38

Standard deviation, σ = 1.5

Consider the level of confidence to be 95%

So, corresponding z* value for 95% confidence level = 1.96

[tex]\text{Now, Margin of error = }z^*\times \frac{\sigma}{\sqrt{n}}\\\\\text{Margin of error = }1.96\times \frac{1.5}{\sqrt{1023}}\\\\\textbf{Margin of error = }\bf 0.09[/tex]

Hence, confidence interval = p ± margin of error

                                               = 0.38 ± 0.09

                                               = (0.29, 0.47)

Q&A Education