Respuesta :

Answer:

The product of given [tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]

Step-by-step explanation:

  Consider the given  product of a constant and a matrix.

[tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex]

To do product we multiply scalar -4  with each element of the matrix given,

[tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]= \left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right][/tex]

On solving further , we get,

[tex]\left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]=\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]

Thus, the product of given [tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]

Q&A Education