What is the product -4• [8,-1,-5,9]
Answer:
The product of given [tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]
Step-by-step explanation:
Consider the given product of a constant and a matrix.
[tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex]
To do product we multiply scalar -4 with each element of the matrix given,
[tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]= \left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right][/tex]
On solving further , we get,
[tex]\left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]=\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]
Thus, the product of given [tex]-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right][/tex]