Respuesta :

Answer:

Using trigonometric ratio:

[tex]\sec \theta = \frac{1}{\cos \theta}[/tex]

[tex]\tan \theta = \frac{\sin \theta}{\cos \theta}[/tex]

From the given statement:

[tex]\cos \theta = -\frac{4}{5}[/tex] and sin < 0

⇒[tex]\theta[/tex] lies in the 3rd quadrant.

then;

[tex]\sec \theta = \frac{1}{-\frac{4}{5}} = -\frac{5}{4}[/tex]

Using trigonometry identities:

[tex]\sin \theta = \pm \sqrt{1-\cos^2 \theta}[/tex]

Substitute the given values we have;

[tex]\sin \theta = \pm\sqrt{1-(\frac{-4}{5})^2 } =\pm\sqrt{1-\frac{16}{25}} =\pm\sqrt{\frac{25-16}{25}} =\pm \sqrt{\frac{9}{25} } = \pm\frac{3}{5}[/tex]

Since, sin < 0

⇒[tex]\sin \theta = -\frac{3}{5}[/tex]

now, find [tex]\tan \theta[/tex]:

[tex]\tan \theta = \frac{\sin \theta}{\cos \theta}[/tex]

Substitute the given values we have;

[tex]\tan \theta = \frac{-\frac{3}{5} }{-\frac{4}{5} } = \frac{3}{5}\times \frac{5}{4} = \frac{3}{4}[/tex]

Therefore, the exact value of:

(a)

[tex]\sec \theta =-\frac{5}{4}[/tex]

(b)

[tex]\tan \theta= \frac{3}{4}[/tex]

Q&A Education