Respuesta :


[tex] \sqrt{ \frac{27x}{48} } = \sqrt{ \frac{ {3}^{3}x}{ {2}^{4} \times 3 } } = \sqrt{ \frac{ {3}^{2}x }{ {2}^{4} } } = \frac{3 \sqrt{x} }{4} [/tex]

Answer:

C

Step-by-step explanation:

using the rules of radicals

• [tex]\frac{\sqrt{a} }{\sqrt{b} }[/tex] ⇔ [tex]\sqrt{\frac{a}{b} }[/tex]

• [tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

given [tex]\sqrt{27x}[/tex] ÷ [tex]\sqrt{48}[/tex]

simplifying the radicals

[tex]\sqrt{27x}[/tex] = [tex]\sqrt{9(3)x}[/tex] = 3[tex]\sqrt{3x}[/tex]

[tex]\sqrt{48}[/tex] = [tex]\sqrt{16(3)}[/tex] = 4[tex]\sqrt{3}[/tex], hence

[tex]\frac{3\sqrt{3x} }{4\sqrt{3} }[/tex]

= [tex]\frac{3\sqrt{x} }{4}[/tex] → C



Q&A Education