Respuesta :

Answer:

The two consecutive positive integers are [tex]4[/tex] and [tex]6[/tex].

Step-by-step explanation:

Let [tex]x[/tex] be an even integer, then the next even integer is [tex](x+2)[/tex].


The sum of the squares of these even integers is [tex]52[/tex].


We can write the following equation and solve for [tex]x[/tex].


[tex]x^2+(x+2)^2=52[/tex].

We expand to get,

[tex]x^2+x^2+4x+4=52[/tex].

We simplify to get,

[tex]2x^2+4x+4-52=0[/tex].


This gives us,

[tex]2x^2+4x-48=0[/tex]


We divide through by 2 to get,

[tex]x^2+2x-24=0[/tex].

This is now a quadratic trinomial

We split the middle term to get,


[tex]x^2+6x-4x-24=0[/tex].


We factor to obtain,

[tex]x(x+6)-4(x+6)=0[/tex]


[tex]\Rightarrow (x+6)(x-4)=0[/tex]


[tex]\Rightarrow (x+6)=0 or (x-4)=0[/tex]


[tex]\Rightarrow x=-6 or x=4[/tex]


We discard [tex]x=-6[/tex] since it is not a positive integer.

[tex]\therefore x=4[/tex]


Hence the two consecutive positive even integers are,

[tex]4[/tex]

and

[tex]4+2=6[/tex]








Answer:

4 and 6


Step-by-step explanation:

one number = x

other number = x + 2


x² + (x + 2)² = 52

x² + x² + 4x + 4 = 52

2x² + 4x - 48 = 0

x² + 2x - 24 = 0

(x - 4)(x + 6) = 0

x = 4 or x = -6


Since x is positive

x = 4

x + 2 = 6

Q&A Education