Line segment DB and line segment AE are medians. If BC=6y+10, AB=22+3y, CE=6x+12, ED=2x+60, then find the value of x and y, and the length of the segments.

Respuesta :

frika

Answer:

[tex]x=45.5,\ y=\dfrac{280}{3}.[/tex]

Step-by-step explanation:

Line segment DB and line segment AE are medians, then

  • [tex]AD=DC=\dfrac{1}{2}AC;[/tex]
  • [tex]BE=CE=\dfrac{1}{2}BC.[/tex].

This gives you that [tex]6x+12=\dfrac{6y+10}{2}.[/tex]

By the triangle midline theorem,

[tex]DE=\dfrac{1}{2}BC,[/tex]

then

[tex]2x+60=\dfrac{22+3y}{2}.[/tex]

Solve the system of two equations:

[tex]\left\{\begin{array}{l}6x+12=\dfrac{6y+10}{2}\\ \\2x+60=\dfrac{22+3y}{2}\end{array}\right.\Rightarrow \left\{\begin{array}{l}12x+24=6y+10\\ \\4x+120=22+3y\end{array}\right.\Rightarrow \left\{\begin{array}{l}6x-3y+7=0\\ \\4x-3y+98=0\end{array}\right.[/tex]

Subtract the second equation from the first one:

[tex]6x-3y+7-(4x-3y+98)=0,\\ \\2x=98-7,\\ \\2x=91,\\ \\x=45.5.[/tex]

Then

[tex]4\cdot 45.5-3y+98=0,\\ \\3y=280,\\ \\y=\dfrac{280}{3}.[/tex]

Q&A Education