Respuesta :

Answer:[tex]P(x)=x^3-10x^2+13x+74[/tex]


Step-by-step explanation: We are given roots of a third degree polynomial function -2, 6+i.

Note: a radical always comes with pair of plus and minus sign.

Therefore, there would be one more root 6-i.

So, all the roots would be -2, 6+i, 6-i.

So, the factors of polynomial function would be

(x+2)(x-6-i)(x-6+i)

Multiplying those factors,

[tex](x+2)(x^2-6x+xi -6x+36-6i-ix+6i-i^2)[/tex]

[tex](x+2)(x^2-12x+36+1)[/tex]

[tex](x+2)(x^2-12x+37)[/tex]

[tex]x^3-12x^2+2x^2+37x-24x+74[/tex]

[tex]=x^3-10x^2+13x+74[/tex]

Therefore,

[tex]P(x)=x^3-10x^2+13x+74[/tex]




Q&A Education