P(A) = 0.60, P(B) = 0.30, and P( A and B) = 0.15. What is P(A or B)?
Answer:
A. 0.75
Step-by-step explanation:
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) = 0.60 + 0.30 - 0.15
P(A or B) = 0.75
Answer:
Option A is correct
[tex]\text{P(A or B)}[/tex] = 0.75
Step-by-step explanation:
Given that:
P(A) = 0.60, P(B) = 0.30, and P( A and B) = 0.15.
Using the formula:
[tex]\text{P(A or B)} = \text{P(A)}+ \text{P(B)}- \text{P(A and B)}[/tex]
Substitute the given values we have;
[tex]\text{P(A or B)} = 0.60+0.30-0.15[/tex]
⇒[tex]\text{P(A or B)} = 0.90-0.15 = 0.75[/tex]
Therefore, the value of [tex]\text{P(A or B)}[/tex] is, 0.75