Which ordered pairs in the form (x, y) are solutions to the equation

4x – 5y = 24?

Choose all answers that are correct.

A.
(−9, −12)


B.
(1, −4)


C.
(4, 8)


D.
(6, 0)

Respuesta :

Answer:

A, D

Step-by-step explanation:

Sub the x and y values into the equation. The x value is the first number in the coordinate, and the y value is the second number.

If the left side is equal to the right side, it is a solution.

Example:

4x-5y=24

4(-9)-5(-12)=24

-36+60=24

24=24

Remember: if the left side does not equal the right side, it is not a solution.

The ordered pairs [tex](-9, -12)[/tex], [tex](1, -4)[/tex] and [tex](6, 0)[/tex] are solutions to the equation [tex]4\cdot x - 5\cdot y = 24[/tex].

In this question we must evaluate the linear equation on each ordered pair. A ordered pair belongs to the function if and only if equivalence exists. Now we proceed to check each ordered pair:

(x, y) = (-9, -12)

[tex]z = 4\cdot (-9) -5\cdot (-12)[/tex]

[tex]z = -36 + 60[/tex]

[tex]z = 24[/tex]

(x, y) = (1, -4)

[tex]z = 4\cdot 1 -5\cdot (-4)[/tex]

[tex]z = 4 + 20[/tex]

[tex]z = 24[/tex]

(x, y) = (4, 8)

[tex]z = 4\cdot (4) - 5\cdot (8)[/tex]

[tex]z = 16 - 40[/tex]

[tex]z = -24[/tex]

(x, y) = (6, 0)

[tex]z = 4\cdot (6) - 5\cdot (0) = 24[/tex]

[tex]z = 24 - 0[/tex]

[tex]z = 24[/tex]

The ordered pairs [tex](-9, -12)[/tex], [tex](1, -4)[/tex] and [tex](6, 0)[/tex] are solutions to the equation [tex]4\cdot x - 5\cdot y = 24[/tex].

We kindly invite to check this question on ordered pairs: https://brainly.com/question/16183359

Q&A Education