Respuesta :

Answer:

[tex]x = \frac{3}{2}orx=-\frac{3}{2}[/tex]

Step-by-step explanation:

The given Equation is

[tex]3x^{2} + 2 = 11-x^{2}[/tex]   .................(i)

Adding ( [tex]x^{2} -11[/tex] ) on both sides of  (i)

[tex]3x^{2}+2+x^{2}-11 = 11-x^{2}+x^{2}-11[/tex]

solving and cancelling out the terms will give

⇒ [tex]4x^{2} -9=0[/tex]  

⇒ [tex](2x)^{2} -(3)^{2} = 0[/tex]     ...................(ii)

Now we Know that

[tex](a)^{2} -(b)^{2} = (a-b)(a+b)[/tex]  

Applying this on equation (ii)

[tex](2x-3)(2x+3)=0[/tex]

This will lead us to

Either 2x-3 =0    .......(iii)        or     2x+3=0   ..........(iv)

Solving equation (iii) for value of x

2x - 3 =0

adding 3 on both sides

2x -3 +3 = 0+ 3

2x = 3

Cross multiplying gives

[tex]x=\frac{3}{2}[/tex]

Solving equation (iv) for value of x

2x + 3 =0

adding -3 on both sides

2x -3 +3 = 0- 3

2x = -3

Cross multiplying gives

[tex]x=\frac{-3}{2}[/tex]

so [tex]x=\frac{3}{2}[/tex] and [tex]x=\frac{-3}{2}[/tex]

Q&A Education