Respuesta :

Answer:

[tex]k=-16,k=-8,k=8,k=16[/tex]

Step-by-step explanation:

We are given quadratic equations as

[tex]x^2+kx+15[/tex]

and it can be factored as

[tex]=(x+a)(x+b)[/tex]

now, we can multiply factor term

[tex](x+a)(x+b)=x^2+(a+b)x+ab[/tex]

now, we can compare

[tex]x^2+(a+b)x+ab=x^2+kx+15[/tex]

so, we get

[tex]k=a+b[/tex]

[tex]ab=15[/tex]

we are given that

'a' and 'b' are integers

so, we can find all possible factors

[tex]15=(-1\times -15),(1\times 15)[/tex]

[tex]15=(-3\times -5),(3\times 5)[/tex]

so, we can find k

At [tex](-1\times -15)[/tex]:

[tex]k=a+b[/tex]

we can plug values

[tex]k=-1-15[/tex]

[tex]k=-16[/tex]

At [tex](1\times 15)[/tex]:

[tex]k=a+b[/tex]

we can plug values

[tex]k=1+15[/tex]

[tex]k=16[/tex]

At [tex](-3\times -5)[/tex]:

[tex]k=a+b[/tex]

we can plug values

[tex]k=-3-5[/tex]

[tex]k=-8[/tex]

At [tex](3\times 5)[/tex]:

[tex]k=a+b[/tex]

we can plug values

[tex]k=3+5[/tex]

[tex]k=8[/tex]

So, values of k are

[tex]k=-16,k=-8,k=8,k=16[/tex]

Q&A Education