Respuesta :

Answer: B

Explanation:

           rate    x    time

Chris:   40     x       t      = 40t

Amy:    60     x     t - 2   = 60(t - 2)

Use the distance formula:

[tex]d = \sqrt{(Chris)^{2}+(Amy)^{2}}[/tex]

[tex]300 = \sqrt{(40t)^{2}+(60(t - 2))^{2}}[/tex]

*****************************************************************************

Answer: B

Explanation:

  x² - 8x + 19

a=1  b=-8  c=19

Use the Quadratic formula to find the solutions for x:

[tex]x = \frac{-b +/- \sqrt{b^{2}-4ac}}{2a}[/tex]

  [tex]= \frac{-(-8) +/- \sqrt{(-8)^{2}-4(1)(19)}}{2(1)}[/tex]

  [tex]= \frac{8+/- \sqrt{64-76}}{2}[/tex]

  [tex]= \frac{8+/- \sqrt{-12}}{2}[/tex]

  [tex]= \frac{8+/- 2i\sqrt{3}}{2}[/tex]

  [tex]= \frac{2(4+/- i\sqrt{3})}{2}[/tex]

     = 4 ± i√3

Solutions are:                  Factors are:

x = 4 + i√3                       x - (4 + i√3) = 0

x = 4 - i√3                       x - (4 - i√3) = 0


i think it may be letter C because you would be adding 2 hours to Chris's time and you would be multiplying 40mph by the amount of time for 40t and amy's time multiplied by his time plus 2 and then plugged into distance formula. would probably not trust my answer i havent done distance form in a while. As for your second problem, im not sure
Q&A Education