[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\dotfill&40000\\ P=\textit{original amount deposited}\dotfill\\ r=rate\to 8\%\to \frac{8}{100}\dotfill &0.08\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annual compounding, thus once} \end{array}\dotfill &1\\ t=years\dotfill &6 \end{cases}[/tex]
[tex]\bf 40000=P\left(1+\frac{0.08}{1}\right)^{1\cdot 6}\implies 40000=P(1.08)^6\implies \cfrac{40000}{1.08^6}=P \\\\\\ 25206.785075\approx P\implies \stackrel{\textit{rounded up}}{25206.79}=P[/tex]