neena03
contestada

Apply the Pythagorean Theorem to find the distance between points A and B.

A) 32 units
B) 34 units
C) 64 units
D) 68 units

Apply the Pythagorean Theorem to find the distance between points A and B A 32 units B 34 units C 64 units D 68 units class=

Respuesta :

Answer:

Distance between points A and B is, [tex]\sqrt{68}[/tex] units

Step-by-step explanation:

Given the coordinates point :

A = (4 , 2) , B = (-4, 0) and C = (4, 0)

Using distance formula:

i,e

[tex]D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

First calculate the length of AC ;

where A = (4, 2) and C = (4, 0)

then using distance formula;

[tex]AC= \sqrt{4-4)^2+(0-2)^2}[/tex]

[tex]AC= \sqrt{(0)^2+(-2)^2}[/tex]

[tex]AC= \sqrt{4}[/tex] = 2 units.

Similarly, calculate the length of BC;

Using distance formula on the given points B =(-4, 0) and C = (4, 0)

then;

[tex]BC= \sqrt{4+4)^2+(0-0)^2}[/tex]

[tex]BC= \sqrt{8)^2}[/tex] = 8 units.

Now, using Pythagorean theorem in triangle ACB; to find the distance AB

[tex]AB^2=AC^2+BC^2[/tex]

Substitute the values of AC = 2 units and BC = 8 units;

[tex]AB^2 =2^2+8^2[/tex]

Simplify:

[tex]AB^2 =4+64 = 68[/tex]

or

[tex]AB= \sqrt{68}[/tex] units.

Therefore, the distance between points A and B is, [tex]\sqrt{68}[/tex] units

Ver imagen OrethaWilkison
Q&A Education