which of the following options is an even function.

A. F(x)=sin(x+π)
B. F(x)=2sin(2x)
C. F(x)=cos(x+π)
D. F(x)=2sin(π+2π)

Respuesta :

Tucon

 


D)  F(x) = 2sin(π+2π) = 2sin(3π) = 2 \cdot 0 = 0

==>  F(x) = 2sin(π+2π)    is an even function.

Correct answer:   (D)


Answer:

Option C - [tex]F(x)=\cos(x+\pi)[/tex]

Step-by-step explanation:

To find : Which of the following options is an even function?

Solution :

To determine the function is even,odd or neither we will find f(-x)

If f(-x) = - f(x) then function is odd.

If f(-x) = f(x) then function is even.

We know that,

[tex]\sin(-x)=-\sin x[/tex] is always a odd function.

[tex]\cos(-x)=\cos x[/tex] is always an even function.

Now, In the following options

A. [tex]F(x)=\sin(x+\pi )[/tex]

[tex]F(-x)=\sin(-(x+\pi))=-\sin (x+\pi)=-F(x)[/tex]

It is a odd function.

B. [tex]F(x)=2sin(2x)[/tex]

[tex]F(-x)=2\sin(-2x)=-2\sin (2x)=-F(x)[/tex]

It is a odd function.

C. [tex]F(x)=\cos(x+\pi)[/tex]

[tex]F(-x)=\cos(-(x+\pi))=\cos(x+\pi)=F(x)[/tex]

It is an even function.

D. [tex]F(x)=2\sin(\pi+\pi)[/tex]

[tex]F(-x)=2\sin(-2x)=-2\sin (2x)=-F(x)[/tex]

It is a odd function.

Therefore, Option C is correct.

Q&A Education