Respuesta :

Answer:

(a/2) ^4  or a^4/16

Step-by-step explanation:

(8a^-3)^-4/3

split into two parts

8^ -4/3   *  (a^-3)^-4/3

using the power to the power rule we can multiply the exponents

8^(-4/3)  *a^(-3*-4/3)

8^ (-4/3) * a^(4)

replace 8 with 2^3

(2^3)^(-4/3) * a^(4)

using the power to the power rule we can multiply the exponents

2^(3*-4/3) * a^(4)

2 ^ (-4) * a^4

the negative exponent means it goes in the denominator if it is in the numerator

a^4/2^4

make a fraction

(a/2) ^4

or a^2/16

The simplest form of the given expression [tex](8a^{-3})^{\frac{-4}{3}}[/tex] is [tex]a^4/16[/tex] and this can be determined by using the arithmetic operations.

Given :

Expression -- [tex](8a^{-3})^{\frac{-4}{3}}[/tex]

The following steps can be used in order to determine the simplest form of the given expression:

Step 1 - The arithmetic operations can be used in order to determine the simplest form of the given expression.

Step 2 - Write the given expression.

[tex]=(8a^{-3})^{\frac{-4}{3}}[/tex]

Step 3 - Split the above expression.

[tex]=8^{\frac{-4}{3}}\times (a^{-3})^{\frac{-4}{3}}[/tex]

Step 4 - Now, 8 can be written as [tex]2^3[/tex] in the above expression.

[tex]=(2^3)^{\frac{-4}{3}}\times (a^{-3})^{\frac{-4}{3}}[/tex]

Step 5 - Simplify the above expression.

[tex]=(2)^{{-4}}\times (a)^{4}[/tex]

Step 6 - Further, simplify the above expression.

[tex]=\dfrac{a^4}{16}[/tex]

For more information, refer to the link given below:

https://brainly.com/question/15385899

Q&A Education