Respuesta :
Answer:
(a/2) ^4 or a^4/16
Step-by-step explanation:
(8a^-3)^-4/3
split into two parts
8^ -4/3 * (a^-3)^-4/3
using the power to the power rule we can multiply the exponents
8^(-4/3) *a^(-3*-4/3)
8^ (-4/3) * a^(4)
replace 8 with 2^3
(2^3)^(-4/3) * a^(4)
using the power to the power rule we can multiply the exponents
2^(3*-4/3) * a^(4)
2 ^ (-4) * a^4
the negative exponent means it goes in the denominator if it is in the numerator
a^4/2^4
make a fraction
(a/2) ^4
or a^2/16
The simplest form of the given expression [tex](8a^{-3})^{\frac{-4}{3}}[/tex] is [tex]a^4/16[/tex] and this can be determined by using the arithmetic operations.
Given :
Expression -- [tex](8a^{-3})^{\frac{-4}{3}}[/tex]
The following steps can be used in order to determine the simplest form of the given expression:
Step 1 - The arithmetic operations can be used in order to determine the simplest form of the given expression.
Step 2 - Write the given expression.
[tex]=(8a^{-3})^{\frac{-4}{3}}[/tex]
Step 3 - Split the above expression.
[tex]=8^{\frac{-4}{3}}\times (a^{-3})^{\frac{-4}{3}}[/tex]
Step 4 - Now, 8 can be written as [tex]2^3[/tex] in the above expression.
[tex]=(2^3)^{\frac{-4}{3}}\times (a^{-3})^{\frac{-4}{3}}[/tex]
Step 5 - Simplify the above expression.
[tex]=(2)^{{-4}}\times (a)^{4}[/tex]
Step 6 - Further, simplify the above expression.
[tex]=\dfrac{a^4}{16}[/tex]
For more information, refer to the link given below:
https://brainly.com/question/15385899