Respuesta :

Answer

See graph

Step-by-step explanation

The given line segment passes through the point [tex](-5,7)[/tex] and  [tex](4,-3)[/tex].

We plot this points and draw a straight line to them to obtain the blue line as shown in the

attachment.

The slope of this line segment is given by the formula

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

This implies that,

[tex]m=\frac{7--3}{-5-4}[/tex]

[tex]m=-\frac{10}{9}[/tex]

The equation of this line is given by the formula,

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y+3=-\frac{10}{9}(x-4)[/tex]

[tex]9y+27=-10(x-4)[/tex]

[tex]9y+27=-10x+40[/tex]

[tex]9y=-10x+13[/tex]

We now find the inverse by interchanging x and y.

[tex]9x=-10y+13[/tex]

We now make y the subject,

[tex]9x-13=-10y[/tex]

[tex]y=-\frac{9}{10}x+\frac{13}{10}[/tex]

We now plot some points.

When

[tex]x=7[/tex]

[tex]y=-\frac{9}{10}\times 7+\frac{13}{10}[/tex]

[tex]y=-\frac{50}{10}=-5[/tex]

This gives the ordered pair

[tex](7,-5)[/tex]

Also when

[tex]x=-3[/tex]

[tex]y=-\frac{9}{10}\times -3+\frac{13}{10}[/tex]

[tex]y=\frac{40}{10}=4[/tex]

This gives the ordered pairs,

[tex](-3,4)[/tex]

We plot these points too and draw a straight line through them to get the red line in the attachment.
Ver imagen kudzordzifrancis
Q&A Education