Respuesta :

Answer:

A: Nature of root

we have a formula to find the roots of quadratic equation

[tex]\frac{-b\pm\sqrt{D}}{2a}[/tex]

where, [tex]D=b^2-4ac[/tex]

We have general form of quadratic equation as

[tex]ax^2+bx+c[/tex]

Here, a=-3,b=6 and c=17  on substituting the values in [tex]D=b^2-4ac[/tex] and [tex]\frac{b\pm\sqrt{D}}{2a}[/tex]

[tex]D=6^2-4(-3)(17)=240[/tex]

Now, substitute D we get

[tex]\frac{-6\pm\sqrt{240}}{2(-3)}=\frac{3+2\sqrt{15}}{3},\frac{3-2sqrt{15}}{3}[/tex]

B: Open upward or downward

This given function is a downward parabola you can refer the figure in the attachment

C: End behaviour

Here, we have negative leading coefficient and even degree

Hence,

[tex]x\rightarrow-\infty[/tex]           [tex]f(x)\rightarrow-\infty[/tex]

[tex]x\rightarrow\infty[/tex]               [tex]f(x)\rightarrow-\infty[/tex]

Ver imagen flightbath

A= -3

B= 6

C= 17

Axis of Symmetry: X=1

Vertex (1, 20)

The Vertex is at a: Maximum

Q&A Education