Respuesta :

Answer:

Length of curve, L=0.3828

Step-by-step explanation:

We are given a curve [tex]y=\ln \cos(x)[/tex]

Length of arc L=[tex]\int ds[/tex]

Where,

[tex]ds=\sqrt{1+y'^2}dx[/tex]

[tex]\text{Where, }0\leq x \leq \frac{\pi}{4}[/tex]

[tex]y=\ln \cos(x)[/tex]

Derivative of y

[tex]y'=-\tan x[/tex]

Substitute y' into ds

[tex]ds=\sqrt{1+\tan^2x}dx\Rightarrow \int |\sec x|dx[/tex]

[tex]\text{Length of arc L}=\int ds[/tex]

[tex]L=\int_{0}^{\pi/4} |\sec x|dx[/tex]

[tex]L=\log|\tan x+\sec x|_{0}^{\pi/4} [/tex]

[tex]L=\log|1+\sqrt{2}|\approx 0.3828[/tex]

Thus, Length of curve, L=0.3828


Q&A Education