Respuesta :
Answer:
How many ways can 6 numbers be chosen from 10?
combinations = n! / r! *(n-r)!
combinations = 10! / (6! * 4!)
combinations = 10 * 9 * 8 * 7 * 6! / (6! * 4!)
combinations = 10 * 9 * 8 * 7 / 4 * 3 * 2* 1
combinations = 10 * 3 * 7
combinations = 210
So the probability is 1 / 210 or 0.0047619048
Step-by-step explanation:
Answer: 210
Step-by-step explanation:
choose 6 numbers out of 10:
₁₀C₆ = [tex]\frac{10!}{(10-6)!(6)!}[/tex]
= [tex]\frac{10*9*8*7*6!}{(4)!(6)!}[/tex]
= [tex]\frac{10*9*8*7}{(4)!}[/tex]
= [tex]\frac{10*9*8*7}{4*3*2}[/tex]
= 10 * 3 * 7
= 210