Respuesta :

Answer:

The coordinates of point O are (2,-1).

Step-by-step explanation:

The opposites sides of parallelogram are parallel to each other and the slopes of parallel lines are equal.

Slope formula

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Let the coordinates of point O be (x,y).

The sides LM and NO are parallel to each other. So, the slope of LM is equal to slope of LM.

[tex]m_{LM}=m_{NO}[/tex]

[tex]\frac{0-(-1)}{0-(-1)}=\frac{0-b}{3-a}[/tex]

[tex]\frac{1}{1}=\frac{-b}{3-a}[/tex]

[tex]3-a=-b[/tex]

[tex]3=a-b[/tex]                 .... (1)

The sides LO and MN are parallel to each other. SO, the slope of LO is equal to slope of MN.

[tex]m_{LO}=m_{MN}[/tex]

[tex]\frac{b-(-1)}{a-(-1)}=\frac{0-0}{3-0}[/tex]

[tex]\frac{b+1}{a+1}=0[/tex]

[tex]b+1=0[/tex]

[tex]b=-1[/tex]

Therefore the value of b is -1.

Put b=-1 in equation 1.

[tex]3=a-(-1)[/tex]

[tex]3=a+1[/tex]

[tex]a=2[/tex]

The value of a is 2. Therefore the coordinates of point O are (2,-1).

Q&A Education