Express the area of a rectangle with length 11y^411y 4 11, y, start superscript, 4, end superscript and width y^2y 2 y, start superscript, 2, end superscript as a monomial.

Respuesta :

Answer:

Area of rectangle =[tex]11y^6[/tex]

Step-by-step explanation:

Let l be the length of rectangle and w is the width of rectangle respectively.

Given: Length of rectangle is [tex]11y^4[/tex] and width of rectangle is [tex]y^2[/tex]

⇒[tex]l =11y^4[/tex] and [tex]w =y^2[/tex]

To find the area of rectangle:

Area of Rectangle(A) is equal to multiply its length by its width.

i.e, [tex]A = l \times w[/tex]

Substitute the given values of l and w in above formula we get;

[tex]A = 11y^4 \times y^2[/tex]

We know that: [tex]a^n \times a^m = a^{n+m}[/tex]

Then;

[tex]A = 11y^{4+2}= 11y^6[/tex]

therefore, the area of rectangle is, [tex]11y^6[/tex]


Q&A Education