Answer:
The coordinates are in the form of [tex](a,\frac{25}{11}a)[/tex], where a can be any real number. Some points (-11,-25),(0,0) and (11,25) are lie on the line.
Step-by-step explanation:
The given equation is
[tex]\frac{y}{x}-2=\frac{3}{11}[/tex]
[tex]\frac{y-2x}{x}=\frac{3}{11}[/tex]
[tex]11(y-2x)=3x[/tex]
[tex]11y-22x=3x[/tex]
[tex]11y=25x[/tex]
Let the x coordinate be a.
[tex]11y=25a[/tex]
[tex]y=\frac{25}{11}a[/tex]
Therefore the coordinates are in the form of [tex](a,\frac{25}{11}a)[/tex].
Put a=0.
[tex](0,\frac{25}{11}\times 0)[/tex]
[tex](0,0)[/tex]
Put a=-11.
[tex](0,\frac{25}{11}\times (-11))[/tex]
[tex](0,-25)[/tex]
Put a=11.
[tex](0,\frac{25}{11}\times (11))[/tex]
[tex](0,25)[/tex]
Therefore the points (-11,-25),(0,0) and (11,25) are lie on the line.