A line is represented by the equation y/x-2 = 3/11. What are the coordinates of some of the points that lie on the line? Please help me. I’ve been doing this for 30 minutes

Respuesta :

Answer:

The coordinates are in the form of [tex](a,\frac{25}{11}a)[/tex], where a can be any real number. Some points (-11,-25),(0,0) and (11,25) are lie on the line.

Step-by-step explanation:

The given equation is

[tex]\frac{y}{x}-2=\frac{3}{11}[/tex]

[tex]\frac{y-2x}{x}=\frac{3}{11}[/tex]

[tex]11(y-2x)=3x[/tex]

[tex]11y-22x=3x[/tex]

[tex]11y=25x[/tex]

Let the x coordinate be a.

[tex]11y=25a[/tex]

[tex]y=\frac{25}{11}a[/tex]

Therefore the coordinates are in the form of [tex](a,\frac{25}{11}a)[/tex].

Put a=0.

[tex](0,\frac{25}{11}\times 0)[/tex]

[tex](0,0)[/tex]

Put a=-11.

[tex](0,\frac{25}{11}\times (-11))[/tex]

[tex](0,-25)[/tex]

Put a=11.

[tex](0,\frac{25}{11}\times (11))[/tex]

[tex](0,25)[/tex]

Therefore the points (-11,-25),(0,0) and (11,25) are lie on the line.

Q&A Education