Two similar polygons have areas of 4 square inches and 64 square inches.

The ratio of a pair of corresponding sides is 1/4
The ratio of a pair of corresponding sides is 1/2
The ratio of a pair of corresponding sides is 1/8
The ratio of a pair of corresponding sides is 1/16

Respuesta :

The ratio of a pair of corresponding sides of 1/16.

Answer:

Option A is correct

The ratio of a pair of corresponding sides is 1/4

Step-by-step explanation:

Definition:

If two polygons are similar, then

the area of similar figure is the square of the ratio of its corresponding sides.

As per the statement:

Two similar polygons have areas of 4 square inches and 64 square inches

Let the corresponding sides of the polynomials are a and b.

then by definition we have;

[tex]\frac{4}{64}=\frac{a^2}{b^2}[/tex]

⇒[tex]\frac{1}{16} = (\frac{a}{b})^2[/tex]

⇒[tex]\sqrt{\frac{1}{16}} =\frac{a}{b}[/tex]

⇒[tex]\frac{1}{4} = \frac{a}{b}[/tex]

or

[tex]\frac{a}{b} = \frac{1}{4}[/tex]

Therefore, The ratio of a pair of corresponding sides is 1/4.

Q&A Education