Respuesta :

Answer:


Step-by-step explanation:

Its A.


Answer:

The statement that is true about functions is:

            If f and g are function then,

       B.        (f+g)(x)=f(x)+g(x)

Step-by-step explanation:

A)

Let us define f(x)=x² and g(x)=1

then we have:

[tex]\dfrac{f(x)}{g(x)}=x^2[/tex]

and

[tex]\dfrac{g(x)}{f(x)}=\dfrac{1}{x^2}[/tex]

Hence, we get:

       [tex]\dfrac{f(x)}{g(x)}\neq \dfrac{g(x)}{f(x)}[/tex]

Hence, option: A is incorrect.

B)

Option: B is always true.

 (f+g)(x)=f(x)+g(x)

C)

Let us define f(x)=x²

Then

[tex]f(a+b)=(a+b)^2=a^2+b^2+2ab[/tex]

and

[tex]f(a)+f(b)=a^2+b^2[/tex]

Hence, we get:

       [tex]f(a+b)[/tex] is not always equal to [tex]f(a)+f(b)[/tex]

D)

Let us suppose [tex]f(x)=4x\ and\ g(x)=\dfrac{1}{x}[/tex]

Now,

[tex](fog)(1)=f(g(1))\\\\\\(fog)(1)=f(1)\\\\\\(fog)(1)=4[/tex]

and

[tex](gof)(1)=g(f(1))\\\\\\(gof)(1)=g(4)\\\\\\(gof)(1)=\dfrac{1}{4}[/tex]

Hence, we get:

             [tex](fog)(x)[/tex] is not always equal to [tex](gof)(x)[/tex]

Q&A Education