Find the following measure for this figure.
Lateral area =
[tex]\bf \textit{lateral area of a cone}\\\\ LA=\pi r\sqrt{r^2+h^2}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=5\\ h=11 \end{cases}\implies LA=\pi (5)\sqrt{5^2+11^2} \\\\\\ LA=5\pi \sqrt{146}\implies LA\approx 189.8[/tex]
Answer:
Lateral Surface area of cone is 190 unit².
Step-by-step explanation:
Given: Height of cone , h = 11 unit
Radius of cone , r = 5 unit
To find: Lateral Surface Area
Slant height , l = [tex]\sqrt{r^2+h^2}[/tex]
[tex]l=\sqrt{5^2+11^2}[/tex]
[tex]l=\sqrt{25+121}[/tex]
[tex]l=\sqrt{146}[/tex]
Lateral surface area = [tex]\pi rl[/tex]
= [tex]\frac{22}{7}\times5\times\sqrt{146}[/tex]
= [tex]189.876436728[/tex]
= [tex]190\:unit^2\:(approx.)[/tex]
Therefore, Lateral Surface area of cone is 190 unit².