Respuesta :
1. Factor the expression [tex]t^2-4t-32:[/tex]
[tex]t^2-4t-32=(t-8)(t+4).[/tex]
2. Since [tex]t-8[/tex] is placed in the denominator of the given expression, then [tex]t\neq 8.[/tex]
3. Now the expression can be simplified:
[tex]\dfrac{t^2-4t-32}{t-8}=\dfrac{(t-8)(t+4)}{t-8}=t+4.[/tex]
Answer:
The simplest form of [tex]\frac{t^2-4t-32}{t-8}[/tex] is t+4.
Step-by-step explanation:
We are given an expression [tex]\frac{t^2-4t-32}{t-8}[/tex].
Factorizing the numerator such that the factors when multiplied give a product of -32 and when added give a result of -4:
[tex]\frac{t^2-4t-32}{t-8}[/tex]
[tex]=\frac{t^2-8t+4t-32}{t-8}[/tex]
[tex]= \frac{t(t-8)+4(t-8)}{t-8}[/tex]
[tex]=\frac{(t+4)(t-8)}{t-8}[/tex]
[tex]= t+4[/tex]
Since the denominator is [tex]t-8[/tex] in this expression, therefore [tex]t\neq 8[/tex] or it will be equal to zero which will make the overall value of the fraction undefined.