Respuesta :

ANSWER

[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n-2)(n+2)}{(n-\sqrt{3})(n+\sqrt{3})}[/tex]

For

[tex]n\ne \pm\sqrt{3}[/tex]


EXPLANATION


We have [tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}[/tex]


This is very easy to simplify. We shall look at the two expressions from a quadratic trinomial perspective.


We rewrite the rational expression to obtain;


[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n^2)^2-10(n^2)+24}{(n^2)^2-9(n^2)+18}[/tex]


We can now see that both the numerator and denominator are quadratic trinomials in [tex]n^2[/tex].


We split the middle terms as follows;


[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n^2)^2-6n^2-4n^2+24}{(n^2)^2-6n^2-3n^2+18}[/tex]



[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{n^2(n^2-6)-4(n^2-6)}{n^2(n^2-6)-3(n^2-6)}[/tex]


We factor further to obtain;

[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n^2-6)(n^2-4)}{(n^2-6)(n^2-3)}[/tex]


We now cancel out common factors to get;


[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n^2-4)}{(n^2-3)}[/tex]



[tex]\frac{n^4-10n^2+24}{n^4-9n^2+18}=\frac{(n-2)(n+2)}{(n-\sqrt{3})(n+\sqrt{3})}[/tex]

For

[tex]n\ne \pm\sqrt{3}[/tex]


frika

1. Factor expression [tex]n^4-10n^2+24:[/tex]

[tex]n^4-10n^2+24=(n^2-4)(n^2-6)=(n-2)(n+2)(n-\sqrt{6})(n+\sqrt{6}).[/tex]

2. Factor expression [tex]n^4-9n^2+18:[/tex]

[tex]n^4-9n^2+18=(n^2-3)(n^2-6)=(n-\sqrt{3})(n+\sqrt{3})(n-\sqrt{6})(n+\sqrt{6}).[/tex]

Note that

[tex]n\neq \sqrt{3},\\n\neq -\sqrt{3},\\n\neq \sqrt{6},\\n\neq -\sqrt{6},[/tex]

because this expression is placed in the denominator.

3. Now

[tex]\dfrac{n^4-10n^2+24}{n^4-9n^2+18}=\dfrac{(n-2)(n+2)(n-\sqrt{6})(n+\sqrt{6})}{(n-\sqrt{3})(n+\sqrt{3})(n-\sqrt{6})(n+\sqrt{6})}=\\ \\=\dfrac{(n-2)(n+2)}{(n-\sqrt{3})(n+\sqrt{3})}=\dfrac{n^2-4}{n^2-3}.[/tex]

Q&A Education