Respuesta :

let's recall that in the I Quadrant, x,y or cosine,sine are both positive, thus


[tex]\bf cos(\theta )=\cfrac{\stackrel{adjacent}{3}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2-3^2}=b\implies \pm\sqrt{16}=b\implies \pm 4=b\implies \stackrel{I~Quadrant}{+4=b} \\\\\\ tan(\theta )=\cfrac{\stackrel{opposite}{4}}{\stackrel{adjacent}{3}}[/tex]

The value of the tanθ is 4/3.

Given that,

The angle θ lies in Quadrant I.

The value of cosθ is 3/5.

We have to determine,

What is tanθ?

According to the question,

The value of tanθ is determined by using the following formula;

[tex]\rm Tan\theta = \dfrac{Perpendicular}{Base}[/tex]

The value of cosθ is 3/5.

On comparing with the following formula;

[tex]\rm Cos\theta = \dfrac{Base}{Hypotenuse}[/tex]

The value of the base is 3 and the hypotenuse is 5.

Then,

By using Pythagoras theorem the value of the perpendicular is,

[tex]\rm (Hypotenuse)^2=(Perpendicular)^2 +(Base)^2\\\\ (5)^2=(Perpendicular)^2 +(3)^2\\\\ 25=(Perpendicular)^2 +16\\\\ 25-9=(Perpendicular)^2\\\\ (Perpendicular)^2 = 16\\\\Perpendicular=\sqrt{16}\\\\Perpendicular=4[/tex]

Therefore,

The value of the tanθ is,

[tex]\rm Tan\theta = \dfrac{4}3}[/tex]

Hence, The value of the tanθ is 4/3.

To know more about Trigonometry click the link given below.

https://brainly.com/question/8069952

Q&A Education