Respuesta :
[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$3700\\ r=rate\to 4.5\%\to \frac{4.5}{100}\dotfill &0.045\\ t=years\dotfill &7 \end{cases} \\\\\\ A=3700e^{0.045\cdot 7}\implies A=3700e^{0.315}\implies A\approx 5069.96[/tex]
Answer:
C. $5,069.96
Step-by-step explanation:
You are given ...
- P = 3700
- r = 0.045
- t = 7
Put these values in the formula where the corresponding variable is, then do the arithmetic.
... A = 3700·e^(0.045·7)
... = 3700·e^0.315
... ≈ 3700·1.3702593
... ≈ 5069.9594...
The balance will be $5069.96.