Respuesta :

[tex]4\sqrt{16} + 8\sqrt{16}[/tex]:

Since [tex]\sqrt{1} =1[/tex], we get:

[tex]4\cdot \:1\cdot \:6+8\cdot \:1\cdot \:6=24+48=72[/tex]

-----------------------------------------------------------------------------------

[tex]7\sqrt{4} *3\sqrt{8}[/tex]

We have [tex]\sqrt{4}=2[/tex]

simplify [tex]\sqrt{8} = \sqrt{2^3} = \sqrt{2^2*2}[/tex]

then the radical rule is used: [tex]\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}[/tex]

⇒ [tex]\sqrt{2^2*2} = \sqrt{2^2} \sqrt{2}= \sqrt{4}\sqrt{2} =2\sqrt{2}[/tex]

Now we have [tex]\sqrt{4}=2[/tex] and [tex]\sqrt{8}=2 \sqrt{2}[/tex]

[tex]7\sqrt{4} *3\sqrt{8} = 7*2*3*2\sqrt{2} = 84 \sqrt{2}[/tex]

-----------------------------------------------------------------------------------

[tex]2\sqrt{4}+5 \sqrt{9}[/tex]

[tex]2\sqrt{4} =2*2= 4[/tex] and [tex]5\sqrt{9} =5*3= 15[/tex]

[tex]2\sqrt{4}+5 \sqrt{9} = 4+15 = 19[/tex]

-----------------------------------------------------------------------------------

[tex]4\sqrt{5} -2\sqrt{5} = 2\sqrt{5}[/tex]

since [tex]2\sqrt{5}[/tex] is the half of [tex]4\sqrt{5}[/tex]

-----------------------------------------------------------------------------------

[tex]-4\sqrt{2}\:+\:5\sqrt{2} =1 \sqrt{2} = \sqrt{2}\\[/tex]    (-4+5=1)

Q&A Education