[tex]4\sqrt{16} + 8\sqrt{16}[/tex]:
Since [tex]\sqrt{1} =1[/tex], we get:
[tex]4\cdot \:1\cdot \:6+8\cdot \:1\cdot \:6=24+48=72[/tex]
-----------------------------------------------------------------------------------
[tex]7\sqrt{4} *3\sqrt{8}[/tex]
We have [tex]\sqrt{4}=2[/tex]
simplify [tex]\sqrt{8} = \sqrt{2^3} = \sqrt{2^2*2}[/tex]
then the radical rule is used: [tex]\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}[/tex]
⇒ [tex]\sqrt{2^2*2} = \sqrt{2^2} \sqrt{2}= \sqrt{4}\sqrt{2} =2\sqrt{2}[/tex]
Now we have [tex]\sqrt{4}=2[/tex] and [tex]\sqrt{8}=2 \sqrt{2}[/tex]
[tex]7\sqrt{4} *3\sqrt{8} = 7*2*3*2\sqrt{2} = 84 \sqrt{2}[/tex]
-----------------------------------------------------------------------------------
[tex]2\sqrt{4}+5 \sqrt{9}[/tex]
[tex]2\sqrt{4} =2*2= 4[/tex] and [tex]5\sqrt{9} =5*3= 15[/tex]
[tex]2\sqrt{4}+5 \sqrt{9} = 4+15 = 19[/tex]
-----------------------------------------------------------------------------------
[tex]4\sqrt{5} -2\sqrt{5} = 2\sqrt{5}[/tex]
since [tex]2\sqrt{5}[/tex] is the half of [tex]4\sqrt{5}[/tex]
-----------------------------------------------------------------------------------
[tex]-4\sqrt{2}\:+\:5\sqrt{2} =1 \sqrt{2} = \sqrt{2}\\[/tex] (-4+5=1)