Respuesta :

We are given function: [tex]M(x) = 6x^2-12.[/tex]

Let us find it's inverse.

In order to find it's inverse, we need to get function equal to y.

[tex]y= 6x^2-12[/tex]

Switching x and y's .

[tex]x= 6y^2-12[/tex]

Now, solving it for y.

[tex]x+12 = 6y^2[/tex]

Dividing both sides by 6, we get

[tex]y^2=\frac{x}{6} +\frac{12}{6}[/tex]

[tex]y^2=\frac{x}{6} +2[/tex]

Taking square root on both sides, we get

[tex]\sqrt{y^2} =\sqrt{\frac{x}{6} +2}[/tex]

[tex]y=\sqrt{\frac{x}{6} +2}[/tex]

Re-writing in the form of given inverse.

[tex]m^{-1}(x)=\sqrt{\frac{x}{3\times2} +2}[/tex]

On comparing with given M^-1 = √((x/3k)+k).

[tex]\sqrt{\frac{x}{3k}  +k} = \sqrt{\frac{x}{3\times2} +2}[/tex]

k=2.

Therefore, correct option is C.) k = 2.



Answer:

Option 2 - k=2

Step-by-step explanation:

Given : [tex]M(x)=6x^2-12[/tex] and [tex]M^{-1}= \sqrt{\frac{x}{3k}+k}[/tex]

To find : What value of k would make these inverses?

Solution :

First we find the inverse of M(x)

Let, [tex]y=6x^2-12[/tex]

Interchange x and y,

[tex]x=6y^2-12[/tex]

Now, find the value of y

[tex]x+12=6y^2[/tex]

[tex]\frac{x+12}{6}=y^2[/tex]

Taking root both side,

[tex]y=\sqrt{\frac{x+12}{6}}[/tex]

[tex]y=\sqrt{\frac{x}{6}+\frac{12}{6}}[/tex]

[tex]y=\sqrt{\frac{x}{6}+2}[/tex]

[tex]M^{-1}=\sqrt{\frac{x}{6}+2}[/tex]

Now, we compare or equate both the inverse function.

[tex]\sqrt{\frac{x}{6}+2}= \sqrt{\frac{x}{3k}+k}[/tex]

[tex]\sqrt{\frac{x}{3(2)}+2}= \sqrt{\frac{x}{3k}+k}[/tex]

On caparison the value of k=2.

Therefore, Option C is correct.

Q&A Education