Respuesta :

C

generate the first few terms using the recursive formula

[tex]a_{2}[/tex] = - 7 × [tex]\frac{1}{3}[/tex] = - [tex]\frac{7}{3}[/tex]

[tex]a_{3}[/tex] = - [tex]\frac{7}{3}[/tex] × [tex]\frac{1}{3}[/tex] = - [tex]\frac{7}{9}[/tex]

[tex]a_{4}[/tex] = - [tex]\frac{7}{9}[/tex] × [tex]\frac{1}{3}[/tex] = - [tex]\frac{7}{27}[/tex]

r = [tex]a_{2}[/tex] / [tex]a_{1}[/tex] = [tex]\frac{1}{3}[/tex]


the n th term formula (explicit ) for a geometric sequence is

[tex]a_{n}[/tex] = [tex]a_{1}[/tex][tex]r^{n-1}[/tex] = - 7([tex]\frac{1}{3}[/tex])^(n - 1)


Answer:

Option C

Step-by-step explanation:

Given is a geometric sequence.

The recursive formula is given as

[tex]a_n = \frac{1}{3} a_{n-1}[/tex]

Hence ratio of nth term to n-1th term

=[tex]\frac{a_n}{a_{n-1} } =\frac{1}{3}[/tex]

[tex]r=\frac{1}{3}[/tex]

I term = [tex]a_1=-7[/tex]

Hence explicit formula is

[tex]a_n = -7(\frac{1}{3} )^{n-1}[/tex]

Option C is right

Q&A Education