Find the LCM of the pair of polynomials.

2x2 − 8x + 8 and 3x2 + 27x − 30


a) 3(x − 2)2(x + 10)(x − 1)


b) 6(x − 2)2(x + 10)(x − 1)


c) 6(x − 2)(x + 10)(x − 1)


d) 3(x − 2)2(x − 10)(x + 1)

Respuesta :

[tex]2x^{2}-8x+8[/tex]

Factor the polynomial.

2([tex]x^{2}-4x+4[/tex])

2(x-2)[tex]^{2}[/tex]

Factor the other Polynomial.

3[tex]x^{2}+27x-30[/tex]

[tex]3(x^{2}+9x-10)[/tex]

[tex]3(x+10)(x-1)[/tex]

This is your answer.

[tex]6(x-2)^{2}(x+10)(x-1)[/tex]

The LCM of the pair of polynomials [tex]2x^{2} -8x+8[/tex] and [tex]3x^{2} +27x-30[/tex] is

6(x-1)[tex](x-2)^{2}[/tex](x+10) which is option b.

What is LCM?

The full form of LCM is lowest common multiple. It is smallest common multiple of two integers a and b. It is the smallest positive integer that can be divisible by a and b.

How to find LCM?

The given polynomials are [tex]2x^{2} -8x+8[/tex] and [tex]3x^{2} +27x-30[/tex]. To find the LCM of these two polynomials we first need to make factors of these polynomials which is done under:

[tex]2x^{2} -8x+8[/tex]=[tex]2x^{2}[/tex]-4x-4x+8

=2x(x-2)-4(x-2)

=(2x-4)(x-2)

=2(x-2)(x-2)

=2[tex](x-2)^{2}[/tex]

[tex]3x^{2} +27x-30[/tex]=[tex]3x^{2}[/tex]+30x-3x-30

=3x(x+10)-3(x+10)

=(3x-3)(x+10)

=3(x-1)(x+10)

LCM=2[tex](x-2)^{2}[/tex]*3(x-1)(x+10)

=6[tex](x-2)^{2}[/tex](x-1)(x+10)

Hence the LCM of polynomials [tex]2x^{2} -8x+8[/tex] and [tex]3x^{2} +27x-30[/tex] is [tex]6(x-2)^{2} (x-1)(x+10)[/tex].

Learn more about LCM at https://brainly.com/question/233244

#SPJ2

Q&A Education