Respuesta :
Answer: y = 5(x - 3)² - 2
Step-by-step explanation:
Vertex form: y = a(x - h)² + k where (h,k) is the vertex and "a" is the vertical stretch
Given (h, k) = (3, -2) and (x, y) = (2, 3), we can find the a-value.
3 = a(2 - 3)² - 2
3 = a(1) - 2
+2 +2
5 = a
Next, input the vertex and the a-value into the vertex equation.
y = 5(x - 3)² - 2
Here,
vertex=(h,k)=(3,-2)
point=(x,y)=(2,3)
So,
[tex]\boxed{Vertical~ form=y=a(x-h)^2+k }[/tex]
in this ,a is the vertical stretched and (h,k)Are the vertex,.
So,value of a =
[tex]\tt{3=a(2-3)^2-2 }[/tex]
[tex]\tt{ 3=a×(-1)^2-2 }[/tex]
[tex]\tt{ 3=a×1-2 }[/tex]
[tex]\tt{ 3=a-2 }[/tex]
[tex]\tt{ a=3+2 }[/tex]
[tex]\tt{a=5 }[/tex]
So According to the question,
equation of the parabola in vertex form=
[tex]\bold{ y=5(x-3)^2-2 }[/tex]