Which of the following are solutions to the inequality -7x+14>-3x-6? Select all that apply.
-10
10
-5
5
-3
3
0

Respuesta :

-7x+14>-3x-6

add 7x to each side

14> 4x-6

add 6 to each side

20>4x

divide by 4

5>x

x<5

solutions

3,0,-3,-5,-10

Answer:

All real numbers less than 5 satisfy the inequality. The set of solutions of the inequality is the interval [tex]\left(-\infty \:,\:5\right)[/tex].

Therefore, -10, -5, -3, 0, 3 are all valid solutions.

Step-by-step explanation:

Solving an inequality means finding all of its solutions. A solution of an inequality is a number which when substituted for the variable makes the inequality a true statement.

To find all the solutions for the inequality [tex]-7x+14>\:-3x-6[/tex] you must:

[tex]\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}\\-7x+14-14>-3x-6-14[/tex]

[tex]\mathrm{Simplify}\\-7x>-3x-20[/tex]

[tex]\mathrm{Add\:}3x\mathrm{\:to\:both\:sides}\\-7x+3x>-3x-20+3x[/tex]

[tex]\mathrm{Simplify}\\-4x>-20[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}\\\left(-4x\right)\left(-1\right)<\left(-20\right)\left(-1\right)[/tex]

[tex]\mathrm{Simplify}\\\\4x<20\\\\\frac{4x}{4}<\frac{20}{4}\\\\x<5[/tex]

All real numbers less than 5 satisfy the inequality. The set of solutions of the inequality is the interval [tex]\left(-\infty \:,\:5\right)[/tex].

Therefore, -10, -5, -3, 0, 3 are all valid solutions.

Q&A Education