Point Q is a point on the side BC of a parallelogram ABCD. point M is on AQ so that 2AM=3QM. Ratio Area of DMQ : Area of ABCD is equal to:
(A) 1/6 (B) 1/5 (C) 1/10 (D) 2/5

Respuesta :

frika

Consider ΔAQD. This triangle has the area

[tex]A_{AQD}=\dfrac{1}{2}\cdot AD\cdot H,[/tex]

where H is the heigh drawn from the point Q to the side AD.

Note that the height H is also the height of the parallelogram. So the area of the parallelogram ABCD is

[tex]A_{ABCD}=AD\cdot H.[/tex]

From these two statements you can conclude that

[tex]A_{ABCD}=2A_{AQD}.[/tex]

Now consider ΔDMQ. The ratio  between  the area of triangles DMQ and AQD is

[tex]\dfrac{A_{\triangle DMQ}}{A_{\triangle AQD}}=\dfrac{\frac{1}{2}\cdot MQ\cdot h}{\frac{1}{2}\cdot AQ\cdot h}=\dfrac{MQ}{AQ}.[/tex]

Since [tex]2AM=3QM,[/tex] you have that

[tex]\dfrac{QM}{AQ}=\dfrac{QM}{QM+AM}=\dfrac{QM}{QM+\frac{3}{2}QM}=\dfrac{2}{5}[/tex]

and

[tex]\dfrac{A_{\triangle DMQ}}{A_{\triangle AQD}}=\dfrac{2}{5}.[/tex]

Thus,

[tex]\dfrac{A_{\triangle DMQ}}{A_{ABCD}}=\dfrac{A_{\triangle DMQ}}{2A_{\triangle AQD}}=\dfrac{1}{2}\cdot \dfrac{2}{5}=\dfrac{1}{5}.[/tex]

Answer: correct choice is B

Q&A Education