Respuesta :

Answer:

ar ΔBDC=6 [tex]in^2[/tex]

ar ΔABD=8 [tex]in^2[/tex]

ar ΔABC=14 [tex]in^2[/tex]

Explanation:

Please take a look of attach figure.

We are given area of triangle ar ΔCDE=5 [tex]in^2[/tex]

ar ΔCDE=[tex]\frac{1}{2}\times DN\times EC[/tex]------------(1)

ar ΔBDE=[tex]\frac{1}{2}\times DN\times BE[/tex]------------(2)

Divide eq(2) by eq(1) and we get,

[tex]\frac{ar\ ΔBDE}{ar\ ΔCDE}=\frac{BE}{EC}[/tex]

[tex]\frac{ar\ ΔBDE}{5}=\frac{1}{5}[/tex]

So, ar ΔBDE=1 [tex]in^2[/tex]

ar ΔBDC=ar ΔBDE+ ar ΔCDE

ar ΔBDC=1+5 = 6 [tex]in^2[/tex]

Similarly,

[tex]\frac{ar\ ΔABD}{ar\ ΔBDC}=\frac{AD}{DC}[/tex]

[tex]\frac{ar\ ΔABD}{6}=\frac{4}{3}[/tex]

ar ΔABD=8 [tex]in^2[/tex]

ar ΔABC=ar ΔABD + ar ΔBDC

ar ΔABC=8+6 = 14 [tex]in^2[/tex]

Ver imagen JenelleTeeters
Q&A Education