Respuesta :

[tex]\bf 24x+25=-6y+7\implies 24x=-6y-18\implies 6y=-24x-18 \\\\\\ y=\cfrac{-24x-18}{6}\implies y=-\cfrac{24}{6}x-\cfrac{18}{6} \\\\\\ y=-4x\underset{\uparrow }{-3}\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]

Set the equation in slope intercept form y=mx+b

To do this first subtract 7 from both sides of the equation to get y alone

24x+25 = -6y+7
-7 -7


24x+18 = 6y

-6y= 24x+18

Then divide by -6 on both sides


[tex] y = \frac{24x}{ - 6} + \frac{18}{ - 6} [/tex]

y= -4x + -3
y= -4x -3

In slope intercept form y=mx+b, b represents the y intercept so b=-3
Q&A Education