Respuesta :

The answer to 9k2 – 6k = 11 is k = 11/12. Though, I'm not sure by the square part.

Here's the decimal form: k=0.91667

Steps:

Multiply the numbers. (9*2)

Add similar elements. (18k - 6k = 11)

Divide both sides by 12.

Simplify.

-

Hope this helped!

Answer:

The solutions of the given equation are [tex]k=\frac{1}{3}+\frac{2}{\sqrt{3}}[/tex] and [tex]k=\frac{1}{3}-\frac{2}{\sqrt{3}}[/tex].

Explanation:

The given equation is

[tex]9k^2-6k=11[/tex]

Divide both sides by 9.

[tex]k^2-\frac{2}{3}k=\frac{11}{9}[/tex]

If an expression is [tex]x^2+bx[/tex] then we need to add [tex](\frac{b}{2})^2[/tex] in the expression to make it perfect square.

In the above equation [tex]b=\frac{2}{3}[/tex], so add [tex](\frac{1}{3})^2[/tex] on both the sides.

[tex]k^2-\frac{2}{3}k+(\frac{1}{3})^2=\frac{11}{9}+(\frac{1}{3})^2[/tex]

[tex](k-\frac{1}{3})^2=\frac{11}{9}+\frac{1}{9}[/tex]

[tex](k-\frac{1}{3})^2=\frac{12}{9}[/tex]

[tex](k-\frac{1}{3})^2=\frac{4}{3}[/tex]

Taking square root both the sides.

[tex]k-\frac{1}{3}=\pm \sqrt{\frac{4}{3}}[/tex]

Add 1/3 on both the sides.

[tex]k=\frac{1}{3}\pm \frac{2}{\sqrt{3}}[/tex]

Therefore the solutions of the given equation are [tex]k=\frac{1}{3}+\frac{2}{\sqrt{3}}[/tex] and [tex]k=\frac{1}{3}-\frac{2}{\sqrt{3}}[/tex].

Q&A Education