Answer:
The perimeter of [tex]\triangle DMN[/tex] will be 62.1939...
Step-by-step explanation:
In [tex]\triangle DMN[/tex], the length of side [tex]DM = 10\sqrt{3}[/tex] and the measures of [tex]\angle M[/tex] and [tex]\angle N[/tex] are 75° and 45° respectively.
As the sum of all angles in a triangle is always 180°, so the measure of [tex]\angle D[/tex] will be: 180°- (75°+45°) = 180°- 120° = 60°
Now using Sine rule, we will get......
[tex]\frac{MN}{Sin(D)}=\frac{DN}{Sin(M)}=\frac{DM}{Sin(N)}\\ \\ \frac{MN}{Sin(60)}=\frac{DN}{Sin(75)}=\frac{10\sqrt{3}}{Sin(45)}\\ \\ MN= \frac{10\sqrt{3}}{Sin(45)}*Sin(60)=21.2132...\\ \\ DN=\frac{10\sqrt{3}}{Sin(45)}*Sin(75)=23.6602...[/tex]
So, the perimeter of [tex]\triangle DMN[/tex] will be: [tex]DM+MN+DN = 10\sqrt{3}+21.2132...+23.6602... =62.1939...[/tex]