Consider that x = −5 and y = −4. Which statement is true about x + y? A) The sum of x and y is a rational number. B) The sum of x and y is an imaginary number. C) The sum of x and y is an irrational number. D) The sum of x and y is neither rational nor irrational.

Respuesta :

Your answer is A. The sum of x and y is a rational number .

Answer:

A) The sum of x and y is a rational number.

Step-by-step explanation:

We will first prove that the given values of x and y are rational and then we will prove the fact that the sum of two rational numbers is a rational number.

A rational number is a number which is in the form [tex]\frac{p}{q}[/tex], where p and q are integers and q ≠ 0.

We can write - 5 as [tex]\frac{-5}{1}[/tex] and clearly 1 ≠ 0.

So, x = -5 is a rational number.

Similarly, y = -4 is also a rational number.

For the second part of the proof, consider any two rational numbers [tex]\frac{p}{q}[/tex] and [tex]\frac{r}{s}[/tex].

Now,

[tex]\frac{p}{q} +\frac{r}{s} =\frac{ps+rq}{qs}[/tex]

Since p, q, r and s are integers, ps + rq is also an integer.

Moreover, since q ≠ 0 and s ≠ 0, qs ≠ 0.

Therefore, [tex]\frac{ps+rq}{qs}[/tex] is also a rational number.

Hence, sum of two rational numbers is also a rational number.

Since x = -5 and y = -4 are rational numbers, x + y = (-5) + (-4) = -9 is also a rational number.

Q&A Education