Given: △DMN, DM=10 3 m∠M=75°, m∠N=45° Find: Perimeter of △DMN
Angle D is 180° -75° -45° = 60°. Drawing altitude MX to segment DN divides the triangle into ΔMDX, a 30°-60°-90° triangle, and ΔMNX, a 45°-45°-90° triangle. We know the side ratios of such triangles (shortest-to-longest) are ...
... 30-60-90: 1 : √3 : 2
... 45-45-90: 1 : 1 : √2
The long side of ΔMDX is 10√3, so the other two sides are
... MX = MD(√3/2) = 15
... DX = MD(1/2) = 5√3
The short side of ΔMNX is MX = 15, so the other two sides are
... NX = MX(1) = 15
... MN = MX(√2) = 15√2
Then the perimeter of ΔDMN is ...
... P = DM + MN + NX + XD
... P = 10√3 +15√2 + 15 + 5√3
... P = 15√3 +15√2 +15 . . . . perimeter of ΔDMN
The Perimeter of △DMN is 35.9
First step
sin 45 / 10 = sin 60/ x
x = sin 60 × 10 / sin 45
= √(3)/2 × 10 × 2 / √(2)
= √(3) / 2 × 10 ×√(2)
= 5 × √(6)
Second step
sin 45 / 10 = sin 75 / y
y = sin 75 × 10 / sin 45
= sin 75 × 10 × 2 / √(2)
= sin 75 × 10 ×√(2)
= 13.066054
Now let determine Perimeter of △DMN
Perimeter of △DMN=10 + 5*√(6) + 13.06605425
Perimeter of △DMN= 35.90770275
Perimeter of △DMN=35.9
Inconclusion Perimeter of △DMN is 35.9
Learn more here:
https://brainly.com/question/13406995