Respuesta :
Let the midpoint of [tex]BC[/tex] be [tex]M(x_{_M};~y_{_M})[/tex].
Then [tex]x_{_M}=\dfrac{x_{_B}+x_{_C}}{2}[/tex] and [tex]y_{_M}=\dfrac{y_{_B}+y_{_C}}{2}[/tex].
We are given [tex]x_{_M}=5, y_{_M}=-2[/tex] and [tex]x_{_B}=3, y_{_B}=4[/tex].
[tex]5=\dfrac{3+x_{_C}}{2}\Rightarrow x_{_C}=7\medskip\\{-2}=\dfrac{4+y_{_C}}{2}\Rightarrow y_{_C}=-8[/tex]
[tex]C(7;-8)[/tex]
Answer:
The coordinates of endpoint C are (7,-8).
Step-by-step explanation:
Given information: Midpoint of BC is (5, -2) and B(3,4).
We need to find the coordinates of C.
Let the coordinate of C are (x,y).
If end points of a line segment are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the midpoint of that segment is
[tex]Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Midpoint of BC is
[tex]Midpoint=(\frac{3+x}{2},\frac{4+y}{2})[/tex]
Midpoint of BC is (5,-2).
[tex](5,-2)=(\frac{3+x}{2},\frac{4+y}{2})[/tex]
On comparing both sides.
[tex]5=\frac{3+x}{2}[/tex]
[tex]10=3+x[/tex]
[tex]10-3=x[/tex]
[tex]7=x[/tex]
The value of x is 7.
[tex]-2=\frac{4+y}{2}[/tex]
[tex]-4=4+y[/tex]
[tex]-4-4=y[/tex]
[tex]-8=y[/tex]
The value of y is -8.
Therefore the coordinates of endpoint C are (7,-8).