Respuesta :

Let the midpoint of [tex]BC[/tex] be [tex]M(x_{_M};~y_{_M})[/tex].

Then [tex]x_{_M}=\dfrac{x_{_B}+x_{_C}}{2}[/tex] and [tex]y_{_M}=\dfrac{y_{_B}+y_{_C}}{2}[/tex].

We are given [tex]x_{_M}=5, y_{_M}=-2[/tex] and [tex]x_{_B}=3, y_{_B}=4[/tex].

[tex]5=\dfrac{3+x_{_C}}{2}\Rightarrow x_{_C}=7\medskip\\{-2}=\dfrac{4+y_{_C}}{2}\Rightarrow y_{_C}=-8[/tex]

[tex]C(7;-8)[/tex]

Answer:

The coordinates of endpoint C are (7,-8).

Step-by-step explanation:

Given information: Midpoint of BC is (5, -2) and B(3,4).

We need to find the coordinates of C.

Let the coordinate of C are (x,y).

If end points of a line segment are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the midpoint of that segment is

[tex]Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Midpoint of BC is

[tex]Midpoint=(\frac{3+x}{2},\frac{4+y}{2})[/tex]

Midpoint of BC is (5,-2).

[tex](5,-2)=(\frac{3+x}{2},\frac{4+y}{2})[/tex]

On comparing both sides.

[tex]5=\frac{3+x}{2}[/tex]

[tex]10=3+x[/tex]

[tex]10-3=x[/tex]

[tex]7=x[/tex]

The value of x is 7.

[tex]-2=\frac{4+y}{2}[/tex]

[tex]-4=4+y[/tex]

[tex]-4-4=y[/tex]

[tex]-8=y[/tex]

The value of y is -8.

Therefore the coordinates of endpoint C are (7,-8).

Q&A Education