Respuesta :

[tex]e^{3x}=12\\\\3x=\ln 12\\\\x=\dfrac{\ln 12}{3}\approx0.83\\\\\\[/tex]

Answer:

x=0.83

Step-by-step explanation:

Given: [tex]e^{3x}=12[/tex]

We are given an exponential equation and to solve for x.

[tex]e^{3x}=12[/tex]

Taking ln both sides

[tex]\ln e^{3x}=\ln 12[/tex]

[tex]3x\ln e=\ln 12[/tex]                        [tex]\because ln a^m=m\ln a[/tex]

[tex]3x=\ln 12[/tex]                            [tex]\because \ln e=1[/tex]

[tex]x=\dfrac{\ln 12}{3}[/tex]                   [tex]\text{divides both sides by 3}[/tex]

The exact value of x is [tex]\dfrac{\ln 12}{3}[/tex]    

Using calculator to find ln 12

[tex]x=\dfrac{2.4849}{3}[/tex]

[tex]x=0.8283[/tex]

Hence, The value of x is 0.83

Q&A Education