[tex]\dfrac{dy}{dx} = 3x^2 \ln(\cot x)-x^3 \csc(x)\sec(x)[/tex]
By the product rule [tex](d/dx)(f(x)g(x)) = f(x)g'(x) + g(x)f'(x)[/tex], we have
[tex]\begin{aligned}\frac{dy}{dx} &= \left(x^3 \ln (\cot x) \right)' \\&= x^3\big(\ln (\cot x)\big)' + \ln (\cot x) \cdot \left(x^3\right)' \end{aligned}[/tex]
By the chain rule:
[tex]\begin{aligned}\big(\ln (\cot x)\big)' &= \dfrac{1}{\cot x} \cdot (\cot x)' \\ &= \dfrac{1}{\cot x} \cdot -\csc^2 x\\&= -\tan (x) \csc^2(x) \\&= - \frac{\sin x}{\cos x} \cdot \frac{1}{\sin^2 x} = - \frac{1}{\cos x} \cdot \frac{1}{\sin x} \\&= -\csc(x)\sec(x)\end{aligned}[/tex]
By the power rule:
[tex](x^3)' = 3x^2[/tex]
thus
[tex]\begin{aligned}\frac{dy}{dx} &= x^3\big(\ln (\cot x)\big)' + \ln (\cot x) \cdot \left(x^3\right)' \\&= x^3\big( -\csc(x)\sec(x) \big) + \ln(\cot x) \cdot (3x^2) \\&= -x^3 \csc(x)\sec(x) + 3x^2 \ln(\cot x) \\&= 3x^2 \ln(\cot x)-x^3 \csc(x)\sec(x)\end{aligned}[/tex]
Nothing to do to simplify any further, other than factoring out [tex]x^2[/tex].