Here is the solution...
1) [tex]\sqrt[3]{135} \\[/tex]
Solution
We can rewrite [tex]\sqrt[3]{135} = \sqrt[3]{27} *\sqrt[3]{5}[/tex]
Here, [tex]\sqrt[3]{27} = 3[/tex]
Now substitute the value, we get
[tex]\sqrt[3]{135} = 3 \sqrt[3]{5}[/tex]
The answer is [tex]3\sqrt[3]{5}[/tex]
2) [tex]-5\sqrt[3]{40}
Solution
[tex]-5\sqrt[3]{40} = -5\sqrt[3]{8} *\sqrt[3]{5}[/tex]
Here [tex]\sqrt[3]{8} = \sqrt[3]{2^{3} } = 2\\[/tex]
Therefore, we get [tex]-5*2\sqrt[3]{5} = -10 \sqrt[3]{5}[/tex]
The answer is-10 \sqrt[3]{5}[/tex]
2) [tex]2\sqrt[3]{5} * 4\sqrt[3]{8}[/tex]
Solution
[tex]\sqrt[3]{8} = 2[/tex]
Now plug in the above in the given expression, we get
[tex]2\sqrt[3]{5} * 4*2 = 16\sqrt[3]{5}[/tex] {2*4*2 = 16]
The answer is [tex]16\sqrt[3]{5}[/tex]