ItsmeKG
contestada

I need help!

Simplifying radical expressions

1)
[tex] \sqrt[3]{135} [/tex]
2)
[tex] - 5 {}^{3} \sqrt{40} [/tex]
3)
[tex] {2}^{3} \sqrt{5} \times {4}^{3} \sqrt{8} [/tex]


Respuesta :

Here is the solution...

1) [tex]\sqrt[3]{135} \\[/tex]

Solution

We can rewrite [tex]\sqrt[3]{135} = \sqrt[3]{27} *\sqrt[3]{5}[/tex]

Here, [tex]\sqrt[3]{27} = 3[/tex]

Now substitute the value, we get

[tex]\sqrt[3]{135} = 3 \sqrt[3]{5}[/tex]

The answer is [tex]3\sqrt[3]{5}[/tex]


2) [tex]-5\sqrt[3]{40}

Solution

[tex]-5\sqrt[3]{40} = -5\sqrt[3]{8} *\sqrt[3]{5}[/tex]

Here [tex]\sqrt[3]{8} = \sqrt[3]{2^{3} } = 2\\[/tex]

Therefore, we get [tex]-5*2\sqrt[3]{5} = -10 \sqrt[3]{5}[/tex]

The answer is-10 \sqrt[3]{5}[/tex]


2) [tex]2\sqrt[3]{5} * 4\sqrt[3]{8}[/tex]

Solution

[tex]\sqrt[3]{8} = 2[/tex]

Now plug in the above in the given expression, we get

[tex]2\sqrt[3]{5} * 4*2 = 16\sqrt[3]{5}[/tex]                         {2*4*2 = 16]

The answer is [tex]16\sqrt[3]{5}[/tex]

Q&A Education