Respuesta :
Hey!
Alright, according to P.E.M.D.A.S., the first step to solving this expression is to distribute.
Original Expression :
[tex]\displaystyle\ -8y^{3} (7y^{2} -4y-1)[/tex]
New Expression {Distributed Old Expression} :
[tex]\displaystyle\ -(56y^{5} -32y^{4} -8y^{3} )[/tex]
Now all you have to do is simplify the parenthesis.
Old Expression :
[tex]\displaystyle\ -(56y^{5} -32y^{4} -8y^{3} )[/tex]
New Expression {Simplified} :
[tex]\displaystyle\ -56y^{5} + 32y^{4} + 8y^{3}[/tex]
So, since the expression can no longer be simplified, the final answer is...
[tex]\displaystyle\ -56y^{5} + 32y^{4} + 8y^{3}[/tex]
Hope this helps!
- Lindsey Frazier ♥
Solution :
Given expression [tex]-8y^{3}(7y^{2}-4y-1)[/tex]
To simplify this expression, first we need to know about the Distributive property.
Distributive Property: [tex]a\times(b+c+d)=(a\times b)+(a\times c)+(a\times d)[/tex]
Given expression [tex]-8y^{3}(7y^{2}-4y-1)[/tex]
Applying Distributive property on this expression:
[tex]\Rigtharrow -8y^{3}(7y^{2}-4y-1)=((-8y^{3})\times7y^{2})+((-8y^{3})\times(-4y))+((-8y^{3})\times(-1))[/tex]
[tex]= -56y^{5}+32y^{4}+8y^{3}[/tex]
Hence, the simplified form of the expression [tex]-8y^{3}(7y^{2}-4y-1)[/tex] is [tex]-56y^{5}+32y^{4}+8y^{3}[/tex].