Respuesta :

Hey!



Alright, according to P.E.M.D.A.S., the first step to solving this expression is to distribute.


Original Expression :

[tex]\displaystyle\ -8y^{3} (7y^{2} -4y-1)[/tex]


New Expression {Distributed Old Expression} :

[tex]\displaystyle\ -(56y^{5} -32y^{4} -8y^{3} )[/tex]


Now all you have to do is simplify the parenthesis.


Old Expression :

[tex]\displaystyle\ -(56y^{5} -32y^{4} -8y^{3} )[/tex]


New Expression {Simplified} :

[tex]\displaystyle\ -56y^{5} + 32y^{4} + 8y^{3}[/tex]


So, since the expression can no longer be simplified, the final answer is...


[tex]\displaystyle\ -56y^{5} + 32y^{4} + 8y^{3}[/tex]


Hope this helps!



- Lindsey Frazier ♥

Solution :

Given expression [tex]-8y^{3}(7y^{2}-4y-1)[/tex]

To simplify this expression, first we need to know about the Distributive property.

Distributive Property: [tex]a\times(b+c+d)=(a\times b)+(a\times c)+(a\times d)[/tex]

Given expression [tex]-8y^{3}(7y^{2}-4y-1)[/tex]

Applying Distributive property on this expression:

[tex]\Rigtharrow -8y^{3}(7y^{2}-4y-1)=((-8y^{3})\times7y^{2})+((-8y^{3})\times(-4y))+((-8y^{3})\times(-1))[/tex]

                           [tex]= -56y^{5}+32y^{4}+8y^{3}[/tex]

Hence, the simplified form of the expression  [tex]-8y^{3}(7y^{2}-4y-1)[/tex] is  [tex]-56y^{5}+32y^{4}+8y^{3}[/tex].

Q&A Education