We need to simplify the expression:
[tex]12x^{-6}y^{10} \times (3x^{7}y)[/tex]
Now, we know that we can resolve the exponents of the variables with the like terms only and we can multiply the coefficients independently:
Now,
[tex]12x^{-6}y^{10} \times 3x^{7}y=(12 \times 3)\times (x^{-6}\times x^{7})\times (y^{10}\times y)[/tex]
On simplifying the above expression we get:
[tex]36\times x^{(-6+7)}\times y^{(10+1)}[/tex]
[tex]=36 \times x^{1}\times y^{11}[/tex]
[tex]=36 \times x \times y^{11}[/tex]
[tex]=36xy^{11}[/tex]
So the simplified form of the expression [tex]12x^{-6}y^{10} \times 3x^{7}y=36xy^{11}[/tex].